New Encryption Primitives for
Uncertain Times

Thomas Ristenpart
University of Wisconsin

Covering joint work with:
Scott Coull, Kevin Dyer, Ari Juels, Thomas Shrimpton

Security in our uncertain times:

z== J[ran reportedly blocking encrypted Internet
% | traffic

The Iranian government is reportedly blocking access to websites that use the ...

- by Jon Brodkin - Feb 10 2012, 9:44pm IST S

LastPass CEQ reveals details on
security breach

by Lance Whitney | May 6, 2011 10:19 AMPDT

"Encryption works. Properly implemented strong
crypto systems are one of the few things that

you can rely on." - Edward Snowden, May 2013

Some failures of symmetric encryption: 1970s — today

M

v
Ey
v
C

<

Example 1: primitive failure
- DES with 56-bit keys

- RC4 plaintext recovery attacks [Paterson, Poettering,
Schuldt 14]

M2

% Example 2: active attack failures

M1
Ey

E, - CBC mode [Vaudenay 02, ...] [Rizzo, Duong 11]
- MAC-then-Encrypt [Alfarden, Paterson 13]

l, [Paterson, R., Shrimpton 12]

C2 [Degabriele, Paterson 10]

Early release of plaintext

Power, timing, access-driven
side channel attacks

Backdoors in PRNGs

Solving all those problems won’t directly
help censorship victims and LastPass users

Deep packet inspection systems can block protocols

| Ciphertexts don’t “look like” benign
traffic to network monitors

LastPass uses password-based encryption that can be cracked

|—> Decryption reveals when wrong key is used

Traditional approach: punt on such problems to systems security

Our approach: new symmetric encryption primitives

Today’s talk

 Part1: Format-transforming encryption
[Dyer, Coull, R., Shrimpton — CCS 2013]

* Part 2: Honey encryption
[Juels, R. — Eurocrypt 2014]

Current Estimates of Internet Censorship

OpenNet Initiative (ONI),
Reporters Without Borders
(via wikipedia; updated Jan 6, 2014)

Pervasive censorship
Substantial censorship
Selective censorship
Changing situation

ENEN

Little or no censorship
Not classified / No data

Magenta-colored countries are “internet black holes”:
have heavy censorship of political, social, and news sites,
internet tools, etc.

Packet inspection and existing countermeasures

payload
Pinfo [TER IR0l “HTTP: ... free+speech ...”

Network monitor

A packet can tell you:
* source address .
* destination address/port Use a proxy service,

« application-level protocols e.g. T
* keywords in payloads @'

Packet inspection and existing countermeasures

payload
IO [P TG “mEsp;.”. #2e+speech 222

Network monitor

1
(4
\

&, L -
=
o

A packet can tell you:
* source address
* destination address/port Why not just use standard encryption tools?
» application-level protocols
* keywords in payloads

Making payload information
unhelpful is a new challenge

Hides the protocol/content
inside the encrypted tunnel...

But use of the encryption
protocol is still visible.

Pakistan Bans Encryption

Iran reportedly blocking encrypted Internet
traffic

The Iranian government is reportedly blocking access to websites that use the ...

Posted by Soulskill on Tuesday August 30, 2011 @&
from the for-undecipherable-reasons dept.

by Jon Brodkin - Feb 10 2012, 9:44pm IST _—

Packet inspection and existing countermeasures

payload J
PO TR NG| “TLS. 222 232, 2232 222

Network monitor

. Making payload information
A packet can tell you: / unhelpful is a new challenge

* source address

* destination address/port

» application-level protocols
* keywords in payloads Used by obfsproxy for Tor

Why not make all packet contents random?

What happens if DPI allows only whitelisted protocols?

Some previous efforts in DPI Circumvention

Stegotorus [Weinberg et al., 2012],
SkypeMorph [Moghaddam et al. 2012],

FreeWave [Houmansadr et al., 2013], etc.

These represent nice steps in the right direction, but

1. Poor performance: 16-256 Kbps reported (best case)

2. Inflexible: not quickly adaptable to changes in DPI rules.

e.g. what if you’ re using SkypeMorph,
and Skype becomes blocked? (Ethiopia 2013)

3. Not empirically validated: do they work against real DPI?

Our goal: cause real DPI systems
to reliably misclassify our traffic

for example: HTTP misclassified as FTP

“HTTP: ... free+speech ...” “This is a benign
FTP message.
%LQ - Let it pass.”
TCP/IP ciphertext | s
crypto > —_—

magic

(and in a way that is flexible and has good throughput/low latency...)

Our goal: cause real DPI systems
to reliably misclassify our traffic
as whatever protocol we want.

“HTTP: ... free+speech ...”

%&)
TCP/IP ciphertext
|_> crypto >

magic

(and in a way that is flexible and has good throughput/low latency...)

We took inspiration from Format-Preserving Encryption

key —

plaintext —m

{ strings that DPI will
classify as protocol X'}

crypto
magic

[Bellare et al., 2009]

a ciphertext string

The desired ciphertext “format”

» that DPI will classify
as protocol X

Format-Transforming Encryption

key —
a ciphertext string

plainteXt —m——— FTE » that DPI will classify

i i as protocol X
{ strings that DPI will P
classify as protocol X'}

Like traditional encryption, with the extra
operational requirement that ciphertexts fall
within the format.

Ciphertext flexibility is built into the FTE syntax

key —

plaintext —m

{ strings that DPI will
classify as protocol X'}

FTE

a ciphertext string

» that DPI will classify
as protocol X

Adapting to new DPI rules or different
protocols requires changing only the format

Ciphertext flexibility is built into the FTE syntax

key —

plaintext —m

{ strings that DPI will
classify as protocol Y }

FTE

a ciphertext string

» that DPI will classify
as protocol Y

Adapting to new DPI rules or different
protocols requires changing only the format

Surveying modern DPI systems

Protocol classification uses

ApplID Regular expressions Free

L7-filter Regular expressions Free

Yaf Regular expressions Free

(sometimes hierarchical)
Bro Simple regular expression triage, Free
then additional parsing and heuristics

nProbe Parsing and heuristics (many of them “regular”) ~300 euros
Proprietary 222 ~10,000 USD

Can we build FTE schemes that support
formats defined by regexes?

Realizing regex-based FTE

key ——

plaintext —Jo —t—> Cciphertext in L(R)

regeX R ety

How should we realize regex-based FTE?

Cryptographic protection for the plaintext

We want: , ,
Ciphertexts in L(R)

Realizing regex-based FTE

keY
Y e authenticated |__

plaintext], |EMCrYPUON —t—> Cciphertext in L(R)

regeX R ety

How should we realize regex-based FTE?

Cryptographic protection for the plaintext

We want: , ,
Ciphertexts in L(R)

1 [Goldberg, Sipser " 85]
Ranking a Regular Language oberg, Sipser, 82

Let L(R) be lexicographically ordered
X0< X] < ... < XI < ... < X|L(R)-1|

012 i IL(R)|-T

Given a DFA (deterministic finite automaton) for L(R),
there are efficient algorithms

1 [Goldberg, Sipser " 85]
Ranking a Regular Language oberg, Sipser, 82

Let L(R) be lexicographically ordered
X0< X] < ... < XI < ... < X|L(R)-1|

o B R ey
012 i IL(R)|-T

Given a DFA (deterministic finite automaton) for L(R),
there are efficient algorithms

rank: L(R) — {O,1,...,|L(R)|-1}

1 [Goldberg, Sipser " 85]
Ranking a Regular Language oberg, Sipser, 82

Let L(R) be lexicographically ordered
X0< X—l < ... < XI < ... < X|L(R)-1|

i IL(R)|-T

Given a DFA (deterministic finite automaton) for L(R),
there are efficient algorithms

rank: L(R) — {O,1,...,|L(R)|-1}

unrank: {O,1,...,|L(R)|—1 1—> L(R) With precomputed tables,
rank, unrank are O(n)

i
X.

such that rank(unrank(i))
and unrank(rank(x;))

Realizing regex-based FTE

Intermediate ciphertext,

interpreted as an integer i... G
...outputs i string in

/ lexicographic ordering

/ of L(R)
key et /

authenticated |y ffinteger]

plaintext gy [EYPEON unrank > ciphertext in L(R)

regex R et regex-to-DFA f———>{[DFA]

Regex R NFA M DFA M’

Exponential blow-up in worst case. Regexes we needed avoid this.

: - Luch D ha, R., Shri -
FTE using NFAs directly ~ [Lcheur Dver ina, R Shrimpton

In submission 2014]

We built a complete FTE record layer and proxy system

Client of
protocol X

O)

FTE
client

FTE(K,R;, M,)

>

<€

FTE(K,R,, M,)

O)

FTE
server

-/

Involved significant engineering effort.

Paper has more details or ask Kevin Dyer

Server of
protocol X

We built a complete FTE record layer and proxy system

—— FTE(K,R;, M,) NG

% e | FTE(K,R,, M) -

” 44\ client < - server
Client of -/ -/ Server of
protocol X protocol X

You are protocol Y!

Want to trick DPI into thinking we’re protocol Y =X
Where do we get R, and R,?

(1) Get from DPI themselves We built regexes for
(2) Easy to manually craft variety of “cover” protocols:
(3) Learn from traffic samples | Y =HTTP, SSH, SMB, SIP, RTSP

Evaluating FTE

- —
@

D=
e~

Client of
protocol X

O)

FTE(K,R;, M,)

>

FTE

FTE

) <
client

FTE(K,R,, M,)

server

| Server of
protocol X

Tests with gets on Alexa Top 50 sites (X = mix of HTTPS/HTTP)
R, R, setto HTTP, SSH, SMB, and more. When do we trick DPI ?

System DPI-derived | Manual Learned
regex’s regex’s regex’s

AppID Always Always Always

L7-filter Always Always Always

Yaf Always Always Always

Bro Sometimes Always Always

nProbe Never Always Almost always
I Proprietary Always Always Always

Web-browsing performance

Target Protocol: HTTP Target Protocol: SMB

1.0 1.0
\\\\\\“H 0-8_ N
|] 0.6} S :
7] 04 == socks-over-ssh|]
= 1 jntersection
7] 02 manual N
e auto
.0 ' , — ' '
0 0 2 4 6 8 10 12 0 0O 2 4 §) 8 10 12
Download Time (seconds) Download Time (seconds)
Top 50 Alexa websites Top 50 Alexa websites

Punchline: FTE or SSH tunnel result in the same
user web-browsing experience

A field test... Without FTE tunnel, we

tried Facebook, YouTube, Tor
website, banned search
queries...

With FTE tunnel, we tried
Facebook, YouTube, Tor
website, banned search
queries...

FTE

client

INTERNET

CJ) I
Used FTE to download Tor bundle:

Tor without FTE: “active blacklisting” attack on proxy
Tor through FTE: no problems

Ran various tests every 5 minutes for one month,
no sign of detection in logs. (We shut it down after that.)

FTE is open source,
runs on multiple platforms/OS, and
fully integrated into Tor.

Undergoing beta tests for use
in Tor bundle clients

Lantern also incorporating FTE into their
anti-censorship tool

http://fteproxy.org

Today’s talk

 Part1: Format-transforming encryption
[Dyer, Coull, R., Shrimpton — CCS 2013]

* Part 2: Honey encryption
[Juels, R. — Eurocrypt 2014]

Password-based encryption example

secret master password user remembers

J v

Amazon.com

W, .
M—> Encrypt > C — ==

\ -
, i _ Password manager service
Message is login password(s) for your websites

stores ciphertext C

LastPass CEO reveals details on
security breach

by Lance Whitney | May 6, 2011 10:19 AM PDT

Internet users ditch “password” as
password, upgrade to “123456”

Contest for most commonly used terrible password has a new champion.

by Jon Brodkin - Jan 20 2014, 4:00pm GMT

Rank Password

1

123456
password
12345678

qwerty

abcl123
123456789
111111
1234567
iloveyou
adobel23

Source:

Change from 2012 >JPlashData
http://splashdata.com/

Up 1 press/worstpasswords2013.htm
Down 1

Unchanged

Up 1 [Bonneau 2012]

69 million Yahoo! Passwords

Down 1 1.1% of users pick same password

New
Up 2
Up5
Up 2
New

People choose weak passwords

Brute-force attacks against ciphertext

Master password pw drawn from set {pw,,pw,,...,pW}

(e.g., g = ~10°)
pW

M . Encrypt C

Brute force attack given C:

M, <- Decrypt(pw,,C) abufdsjkl!feqgfds;
M, <- Decrypt(pw,,C) hgjk!alc&ewj*ofw
M, <- Decrypt(pw;,,C) password123

M, <- Decrypt(pw,,C) tyei0lagjzfjfdajsal

Password-based encryption

e PKCS#5 standard:

— Slow down decryption by lots of hashing and use
salts

— Provably works ... [Bellare, R., Tessaro — Crypto 12]

— ... but only slows down previous attack by
constant factor

Embedding decoys into encryption?

Master password pw drawn from set {pw,,pw,,...,pW}
(e.g., g ="~10°
pW

M . Encrypt | C

What if we could build encryption so that:

Brute force attack given C:

M, <- Decrypt(pw,,C) abufdsjkl!feqgfds;
M, <- Decrypt(pw,,C) hgjk!alc&ewj*ofw
M, <- Decrypt(pw;,,C) password123

M, <- Decrypt(pw,,C) tyei0lagjzfjfdajsal

Embedding decoys into encryption?

Master password pw drawn from set {pw,,pw,,...,pW}

(e.g., g = ~10°)
pW

M . Encrypt C

What if we could build encryption so that:

Brute force attack given C:

M, <- Decrypt(pw,,C) 123456789
M, <- Decrypt(pw,,C) 11111

M, <- Decrypt(pw;,,C) password123

2
2

Attacker would have to try) adobel23
logging in with decoy passwords

Decoys in computer security

Decoys, fake objects that look real, are a time-
nonored counterintelligence tool.

n computer security, we have
“honey objects”:

— Honeypots [S02]

— Honeytokens, honey accounts

— Decoy documents [BHKS09] (many others by
Keromytis, Stolfo, et al.)

— Honeywords for password hashing [JR13]

Password vaults are just
one kind of message

* RSA secret keys
— Uniform bit strings as secret exponents [HK99]

 Cookies, other bearer tokens, other
authentication values

e Non-authenticaton related?
— English language text

[Juels, R. —

HOney enCrypﬁOn Eurocrypt 2014]

 Same APl as password-based encryption schemes

— Arrange to be secure in sense of [BRT12] (keep salting
and hash chains)
* Use special encodings to ensure that decrypting
ciphertext with *wrong* key vyields fresh sample
from designer’s estimate of message distribution

* Good encoding:
attacker provably can’t pick out right message

Honey encryption for prime numbers

Useful to store secret keys for some authentication systems (RSA) [HK99]

n=1024-bit prime pwW
number chosen
uniformly -
P . Encrypt C

Attacker can run primality tests to see which is prime.
Each M. is prime w/ probability 1 / 1024

Brute force attack given C:

M, <- Decrypt(pw,,C) 100
M, <- Decrypt(pw,,C) 321849
M, <- Decrypt(pw;,C) 9883

M, <- Decrypt(pw,,C) 16

Honey encryption for prime numbers

Useful to store secret keys for some authentication systems (RSA) [HK99]

n=1024-bit prime pwW

number chosen

uniformly 5 | Honey | c
Encrypt

All outputs of decryption are uniformly
distributed prime numbers!

Brute force attack given C:

M, <- Decrypt(pw,,C) 102953
M, <- Decrypt(pw,,C) 56431
M, <- Decrypt(pw;,C) 0883

2
24

M, <- Decrypt(pw,,C) 26171

Honey encryption for prime numbers

Useful to store secret keys for some authentication systems (RSA) [HK99]

n=1024-bit prime

number chosen
uniformly

Uniform
prime
number

P

Fresh uniform
prime
number

PI

Distribution-
transforming
encoder

Distribution-
transforming
decoder

pw
Honey | C
Encrypt
pw
Uniform -
bit string S (Conventional*)
Encryption
pw’
Fresh
uniform
bit string S’

(Conventional™)
Decryption

Honey encryption for prime numbers

Useful to store secret keys for some authentication systems (RSA) [HK99]

n=1024-bit prime PW
number chosen
uniformly -
P . Honey
Encrypt
Uniform
prime Xl,...,Xt<-$ (Zn)t Uniform
number Find 1stiw/ X_i prime | pjt string s
P X. <-P |
Output S = X,,..., X,
Fresh uniform Fresh
i:lrr:te)er ’ o uniform
X)X =S bit string S’
P’ Find 1stiw/ X_i prime

Output X/’

C
pw
C<-H(pw)+S |
pw’

S’ <- H(pw’) + C

Honey encryption for prime numbers

Useful to store secret keys for some authentication systems (RSA) [HK99]

n=1024-bit prime pwW
number chosen l
uniformly

P —> Honey —> C
Encrypt

Thm (informal). No attacker A can recover correct
message with probability better than~ 1/ g

Security bound is optimal!

Intuition for proof

Balls thrown independently into

MR Game: Can view experiment as a balls-and-bins game
P <-S GenPrime()

pw <-S GenKey() Balls are keys

S <-S Encode(P) (Equal weight 1/q for

C<-H(pw) + S uniform distribution)

P’ <- AH(C)

Ret (P=P’) i:::::::—:::\\\\\V

bins (when H is RO)

P

P, P

Adversary’s advantage maximized by
picking bin at end of game with most balls

Expected maximum load E[L] is
expected weight of maximally weighted bin

Well-studied for some settings

Bins are possible messages.
Equal-sized if decoded primes uniform
(t must be large enough)

In this case: if g? << k then
E[L] = 1/q + negl

We give broader analysis framework

e Keys (passwords) are not uniformly chosen
— Weights of balls differ (use theory of majorization)

 Message spaces not always uniform

— E.g.: non-uniform primes (OpenSSL), credit card #
w/ pin, website passwords

— Bin sizes differ

* See paper for more details

Honey encryption: the future

* |In paper only give DTEs for some message types
— Uniform and non-uniform prime numbers
— Credit-card numbers (w/ PINSs)

 Want to build ones for messages being

— Passwords (to help out poor Lastpass)
* Already have some working prototypes

— Others?
* Operational considerations
— Typo safety

— Detection of online attacks
— Further deployment scenarios?

Solving classic problems won’t directly
help censorship victims and LastPass users

Deep packet inspection systems can block protocols

| Ciphertexts don’t “look like” benign
traffic to network monitors

LastPass uses password-based encryption that can be cracked

|—> Decryption reveals when wrong key is used

Traditional approach: relegate such problems to systems security

Our approach: new symmetric encryption primitives

New symmetric encryption primitives can
help censorship victims and LastPass users

Deep packet inspection systems can block protocols

|_) FTE ciphertexts “look like” benign
traffic to network monitors

LastPass uses password-based encryption that can be cracked

|—> HE decryptions indistinguishable from real plaintexts

Traditional approach: relegate such problems to systems security

Our approach: new symmetric encryption primitives

Today’s talk

e Part 1: Format-transforming encryption
[Dyer, Coull, R., Shrimpton — CCS 2013]

* Part 2: Honey encryption
[Juels, R. — Eurocrypt 2014]

12000 -

10000 -

8000 -

6000 -

4000 -

2000 -

O_

Directly connecting users from the Islamic Republic of Iran

|

\

Iran deploys filters for
Tor handshakes

|
Dec-2010

|
Jan-2011

Tor rolls out new code
that avoids this filter

| | |
Feb-2011 Mar-2011 Apr-2011

The Tor Project - https://metrics.torproject.org/

FTE engineering challenge: large plaintexts

GV —

plaintext —Jo

(Sfo{S) el L —

authenticated
encryption

regex-to-DFA

[integer]

unrank

[DFA]

Using very large languages leads to:

> ciphertext in L(R)

/

IL(R)| bounds length
of longest plaintext

large tables — naively, (#DFA states) x (length of longest plaintext)
latency issues — waiting for long plaintext to buffer

Chunking, and using unrank(C,), unrank(C,), unrank(C,), leads to:

receiver-side parsing issues — how to affect the commas?

Today’s DPI evaded by FTE

Can DPl adapt to detect FTE? W§:==
Approach ___________llsues ____

Use R;, R, against FTE False positives

Find R that matches against FTE, Fast to change FTE formats
but not legitimate

Find non-regular checks Speed?

(e.g., HTTP Content-length field) (~30% of Alexa traffic doesn’t
include Content-length)

277 277

Today’s DPI evaded by FTE

Can DPI adapt to detect FTE?

Time Protocol Length Info
0.910808 HTTP 301 GET /main/jobs/jobs/c3GcfOpImL.png HTTP/1.8
B.888479 HTTP 15177 HTTP/1.1 200 0K (PNG)

¥ Hypertext Transfer Protocol
» GET /main/jobs/jobs/c3GcfOpImL.png HTTP/1.8\r\n

Host: htmlmusicsports.org\ri\n

Connection: close\r\n

Date: Tue, 24 Aug 9446 97:07:16 PSTA\r\n
If-Modified-Since: Wed, 19 Aug 1427 28:23:80 GMT\r\n
Cookie: PHPSESSID=caC343B8b217bE8a759d21D3FDDcD5aa;\r\n

