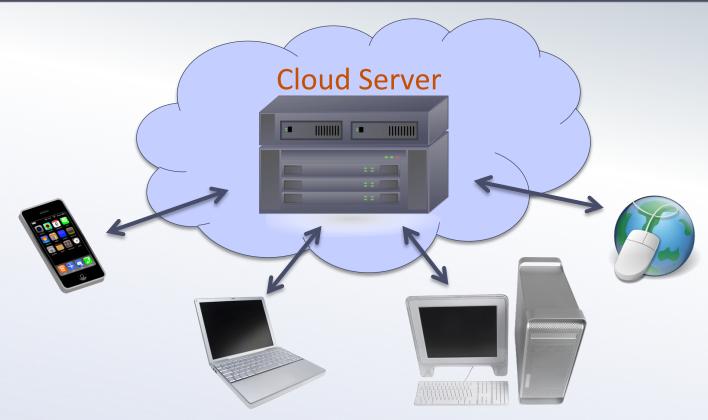

Efficient Fuzzy Search on Encrypted Data

Alexandra Boldyreva, Georgia Tech Nathan Chenette, Clemson University

Fast Software Encryption 2014 London, UK

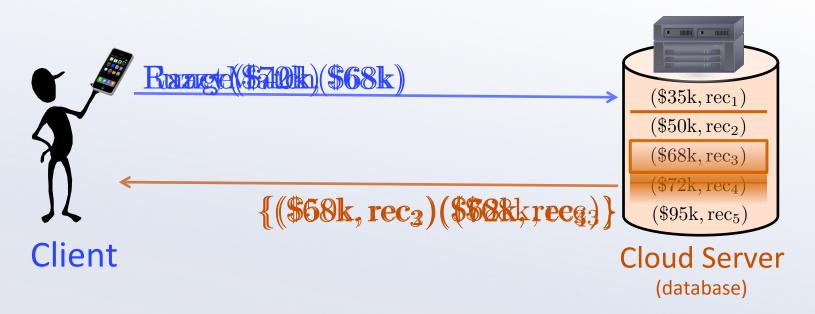
Fuzziness in NHM?



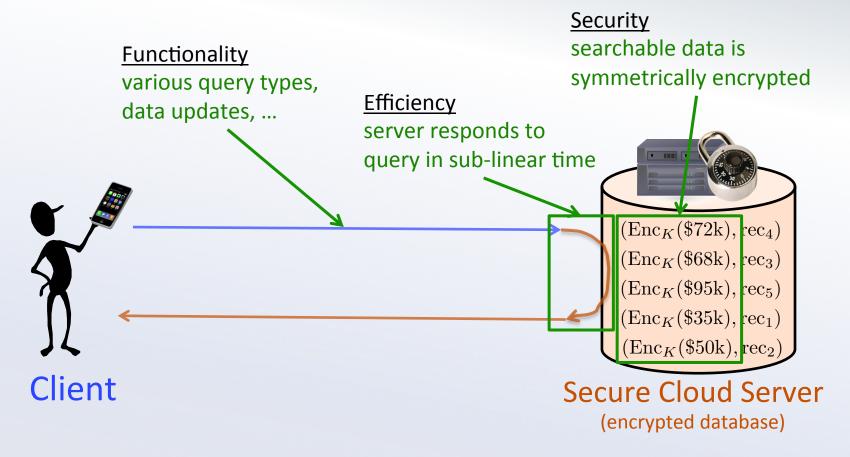
Outline

- Background and motivation for efficient search on encrypted data
- Efficient Fuzzy-Searchable Encryption (EFSE) for efficient error-tolerant (fuzzy) queries on encrypted data
- Primitives and optimal EFSE security
- General "tag-encoding" construction template and security conditions
- Optimally-secure scheme
- More space-efficient, less secure schemes

Background and Motivation


Cloud Storage

- Advantages: mobility, flexibility, decentralization, division of labor, lower costs
- Major disadvantage: insecurity


Cloud Storage

- A.k.a. Database-as-a-Service
- Server efficiently responds to client's queries/updates
 - Query efficiency: search time sub-linear in database size
 - Query functionality: exact-match, range, error-tolerant (fuzzy),...

Secure Cloud Storage: Goals

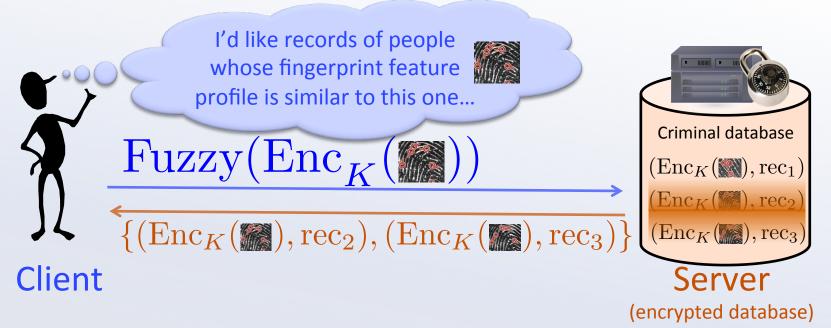
Three goals: security, efficiency, functionality

Efficient Searchable Encryption

- Efficiency, security, and functionality are at odds
 - E.g., strong encryption requires linear search time

- The study of schemes balancing these goals is efficient searchable encryption (ESE)
 - Cryptographic efforts often focus on strong security
 - Practitioners wonder: how much security is possible without sacrificing efficient functionality?

Past Results in Searchable Symmetric Encryption (SSE)

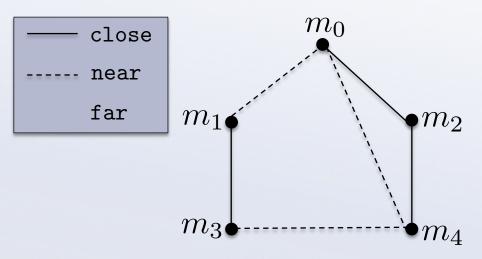

	Security	Efficiency	Functionality
Fully Homomorphic Encryption [RAD78,G09] Oblivious RAM [G096]	Semantic+	Impractical	All query types
Exact-match SSE [SWP00,G03,GSW04,CM05] Range-query SSE [BW07, SBCSP07]	Semantic+	Linear+	Exact-match Range
Exact-match ESE via static indexes[CGKO06,SvLDHJ10,KO12] Similarity ESE via static indices [KIK12]	Adaptive semantic	Sub-linear	Exact-match Fuzzy Limited dynamic data updates
Ad-hoc order-preserving encryption [AKSX04] Ad-hoc efficient fuzzy-searchable encryption [LWWCRL10]	Undefined/unknown	Sub-linear	Range Fuzzy
Efficiently-searchable authenticated encryption [ABO07]	Leaks only equality	Sub-linear	Exact-match
Order-preserving encryption [BCLO09,BCO11]	Pseudorandom OP, Low-order-bit 1way	Sub-linear	Range
Efficient fuzzy-searchable encryption [BC14]	Leaks only closeness and equality*	Sub-linear*	Fuzzy

Goal

- Past fuzzy-searchable encryption schemes
 - [KIK12] scheme relies on knowing the data in full in advance (no dynamic updates)
 - [LWWCRL10] scheme is ad-hoc and has no formal security analysis (we show that it has some security limitations)
- Our goal: provide the first provably-secure solutions for supporting efficient fuzzy search on dynamically-updatable, symmetrically encrypted data

EFSE and Motivation

- Intuitively, efficient fuzzy-searchable encryption (EFSE) refers to schemes where fuzzy queries can process in the ciphertext domain
- Useful when data is inherently approximate or errorprone (e.g., biometric data)

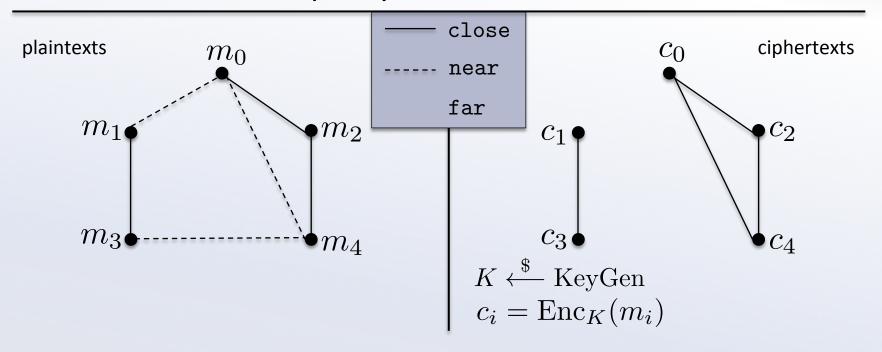

EFSE Primitives and Security Notion

Closeness

- How to define "closeness" of messages (that we want ciphertexts to reveal)?
- lacktriangle Closeness domain: domain $\mathcal D$ and closeness function Cl

$$\operatorname{Cl}: inom{\mathcal{D}}{2} o \{\mathtt{close}, \mathtt{near}, \mathtt{far}\}$$

Useful to characterize a closeness domain graph-theoretically

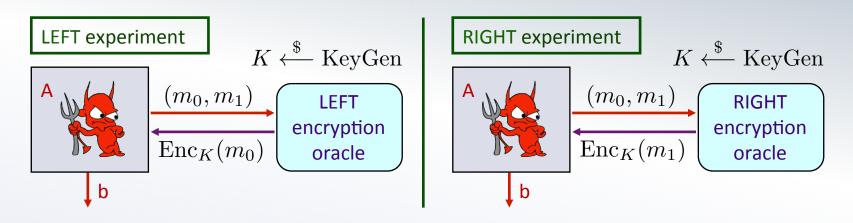


Closeness graph: close edges

Nearness graph: near and close edges

Encryption Leaking Closeness

 Essentially, a symmetric encryption scheme from one closeness domain to another is fuzzy-searchable (FSE) if encryption sends close messages to "close ciphertexts" and far messages to "far ciphertexts". We also require FSE schemes to leak equality.

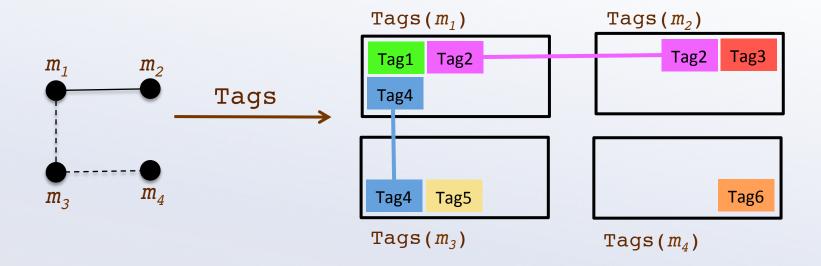

Efficient Fuzzy-Searchable Encryption

To be efficient fuzzy-searchable (EFSE), an FSE scheme must enable finding close ciphertexts to a given ciphertext efficiently (sub-linear)

Optimal Security for FSE

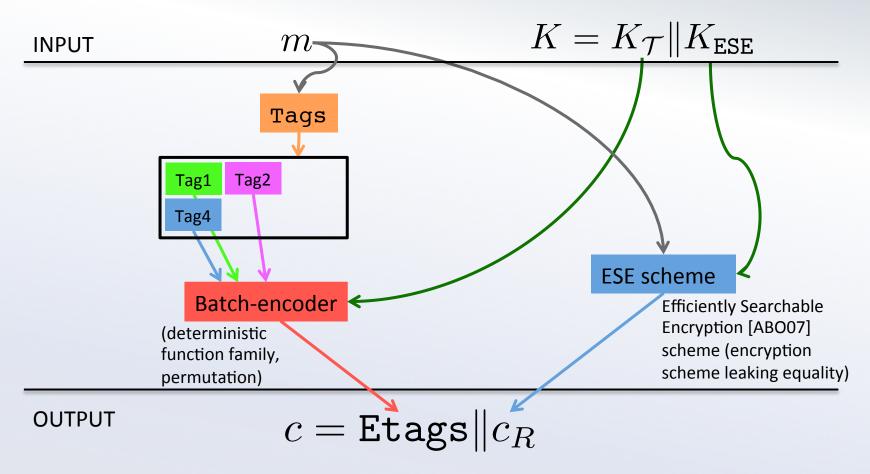
- Optimally, an FSE scheme will leak only what it is supposed to: equality and closeness of messages
- We weaken IND-CPA to IND-CLS-CPA: indistinguishability under same-closenesspattern chosen-plaintext attacks

IND-CLS-CPA-Security



- Restriction: Left-right queries (m_0, m_1) must have the same equality and closeness pattern
 - That is, $m_0^i=m_0^j$ if and only if $m_1^i=m_1^j$ and otherwise $\mathrm{Cl}_{\mathcal{D}}(m_0^i,m_0^j)=\mathrm{Cl}_{\mathcal{D}}(m_1^i,m_1^j)$ $\forall i,j$
- We call an OPE scheme IND-CLS-CPA-secure if no efficient adversary can output 1 with noticeably different probabilities between the two experiments.

General Tag-Encoding Construction


Closeness-Preserving Tagging

- A closeness-preserving tagging function (CPTF) is a function
 Tags from messages to sets of "tags" such that
 - tag sets of close message pairs intersect
 - tag sets of far message pairs are disjoint
 - (tag sets of near message pairs are unrestricted)

Tag-Encoding Template Construction

Template encryption given a tagging function Tags:

Using the Construction for Fuzzy Search on Encrypted Data

$$c = \mathtt{Etags} \| c_R$$

- The encoded-tags leak closeness
 - Close ciphertexts overlap in Etags
 - Far ciphertexts have disjoint Etags
 - To implement efficient fuzzy search, maintain (say)
 a search tree indexed by encoded-tags
- ullet The ESE output, c_R , leaks equality

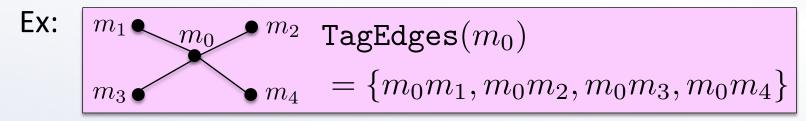
Correctness and Security Conditions

	Tags	Batch-encoder	ESE scheme [ABO07]
Conditions for EFSE correctness	is a CPTF with small max-number-of-tags over the message space	is collision-free	
Conditions for optimal IND-CLS-CPA-security	is "consistent"	is PP-CBA (privacy- preserving under chosen batch attacks)	is IND-DCPA [BKN04] (indist. under distinct chosen- plaintext attacks)
Recommended instantiation	[see specific constructions]	Blockcipher-based pseudorandom permutation	Blockcipher-based [ABO07]
Condition for IND-CLS-CPA-insecurity	is not "consistent"		

??

Consistency of a CPTF

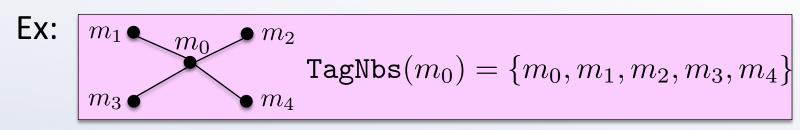
■ A CPTF Tags is consistent if *any* two message sets $\{m_0^1, \dots, m_0^q\}$ and $\{m_1^1, \dots, m_1^q\}$ having the same equality and closeness pattern overlap in the same number of tags, i.e.,


$$\left|\bigcap_{i\in[q]} \mathrm{Tags}(m_0^i)\right| = \left|\bigcap_{i\in[q]} \mathrm{Tags}(m_1^i)\right|$$

 Theorem. Consistency of Tags is necessary and sufficient (given the other conditions) for IND-CLS-CPA-security of the tag-encoding construction

Specific Constructions

Optimally-Secure Construction


- Let G = (V, E) be the closeness graph after possibly adding dummy messages and edges to make vertex degree uniform
- Define TagEdges $(m) = \{e \in E \mid m \in e\}$

- CPTF: close messages share an edge, far messages do not
- consistent: number of edges shared by two isomorphic message-sets is equal
- Thus, the associated scheme is IND-CLS-CPA-secure as long as the max message degree is small

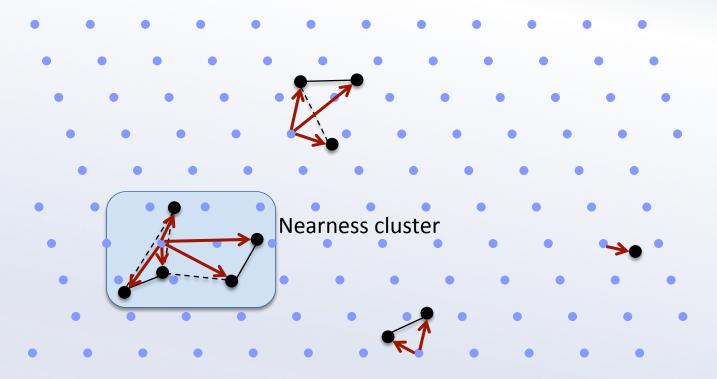
IND-CLS-CPA-Insecurity of Past Scheme

- This is an improvement over the previous EFSE scheme from [LWWCRL10], which is not IND-CLS-CPAsecure
- Its basic idea is to tag neighbors in the closeness graph, and fits into our tag-encoding template with CPTF TagNbs $(m) = \{m' \in V \mid \{m, m'\} \in e\} \cup \{m\}$

This CPTF is not consistent, so the scheme is IND-CLS-CPA-insecure

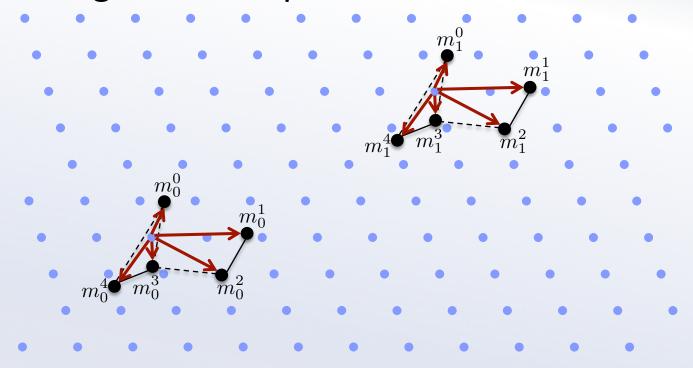
Unavoidable Space-Inefficiency

- Both (secure) edge-tagging and (insecure) neighbor-tagging schemes are often spaceinefficient
 - Ciphertext size linear in max closeness degree
- However, we show this ciphertext length is necessary in order to support EFSE on arbitrary closeness domains
 - Smaller ciphertexts cannot hold enough information to precisely describe closeness relationships in an arbitrary domain


Space-Efficient EFSE

Relaxing Requirements

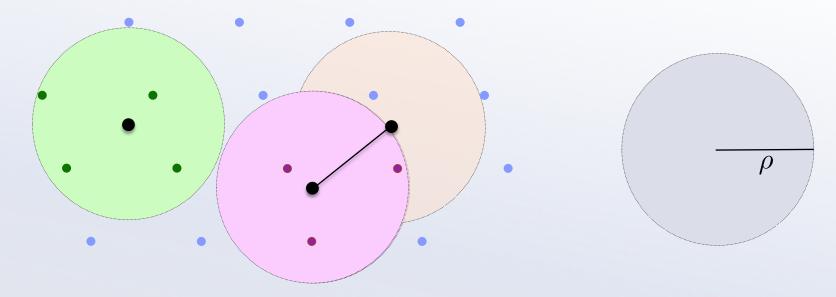
- The impossibility result relies on a very strict notion of closeness
- Can we improve space-efficiency for EFSE on closeness domains with "nearness"?
 - Recall: near messages can be sent to close or far ciphertexts
 - Unfortunately, having "more nearness" does not seem to improve space-efficiency if aiming for IND-CLS-CPA
- We need new notions of security to evaluate such schemes
- We focus on practical closeness domains: real multidimensional spaces with closeness defined by a metric and (close and near) thresholds


Macrostructure Security

- lacktriangle Defined with respect to a regular lattice $\mathcal L$ in $\mathbb R^n$
- Intuitively, hides all information except message location modulo the lattice for each nearness cluster

Macrostructure Security

 The notion requires that nearness clusters with same message locations modulo the lattice have indistinguishable ciphertexts



Macrostructure Security

- Relationships within a nearness cluster may be totally leaked, but only "small-bit" information is leaked about disconnected messages
 - Useful in applications where this leakage is acceptable
- We call this macrostructure security with respect to the lattice (MacroStruct-L-secure)
- On \mathbb{R}^n with closeness defined by a metric and threshold, attainable through a general construction given a valid anchor radius for \mathcal{L}

Anchor Radius Construction

- \blacksquare Consider balls of radius ρ centered at each message. ρ is a valid anchor radius if
 - Close message pairs' balls always contain a common lattice point
 - Far message pairs' balls never share a lattice point
- lacktriangle Lattice points within ho of a message are its anchor points

Anchor Radius Construction

- Construction: use tag-encoding template with tagging function sending a message to its anchor points
- Results in a macrostructure-secure scheme
- We propose possible lattices and anchor radii for various dimensions, and discuss their domain-flexibility and space-efficiency

Conclusion

Conclusion

- Foundational cryptographic study of EFSE
- Primitives, appropriate security notions, and the first provably-secure EFSE schemes
 - Closeness domain, EFSE, tag-encoding template
 - Optimally-secure scheme
 - Space-inefficiency is unavoidable for the application
 - More space-efficient schemes that meet a natural new security notion and may be useful for applications such as in secure cloud storage

Thanks!