
Minimum Number of Multiplications of ∆U Hash
Functions

Mridul Nandi

Indian Statistical Institute, Kolkata

mridul@isical.ac.in

March 4, FSE-2014, London

Mridul Nandi ∆U hash and Multiplication



Authentication: The Popular Story

1 Alice and Bob share a secret key K .

2 Data Integrity: Alice sends M along with tag T = TagK (M)
to Bob. Bob can verify.

Examples from Scratch.

3 Fixed Input-Length (FIL) and Fixed Output-Length (FOL) Prf
(or Mac) f

Blockcipher
compression function of a hash (key is injected through chain
or message block).

4 Domain extensions (construction of VIL) based on

1 blockcipher (variants of CBC, PMAC etc.) and
2 compression functions (HMAC, EMD, sandwich, MDP etc.).

Mridul Nandi ∆U hash and Multiplication



Authentication: The Popular Story

1 Alice and Bob share a secret key K .

2 Data Integrity: Alice sends M along with tag T = TagK (M)
to Bob. Bob can verify.

Examples from Scratch.

3 Fixed Input-Length (FIL) and Fixed Output-Length (FOL) Prf
(or Mac) f

Blockcipher
compression function of a hash (key is injected through chain
or message block).

4 Domain extensions (construction of VIL) based on

1 blockcipher (variants of CBC, PMAC etc.) and
2 compression functions (HMAC, EMD, sandwich, MDP etc.).

Mridul Nandi ∆U hash and Multiplication



Authentication: The Popular Story

1 Alice and Bob share a secret key K .

2 Data Integrity: Alice sends M along with tag T = TagK (M)
to Bob. Bob can verify.

Examples from Scratch.

3 Fixed Input-Length (FIL) and Fixed Output-Length (FOL) Prf
(or Mac) f

Blockcipher
compression function of a hash (key is injected through chain
or message block).

4 Domain extensions (construction of VIL) based on

1 blockcipher (variants of CBC, PMAC etc.) and
2 compression functions (HMAC, EMD, sandwich, MDP etc.).

Mridul Nandi ∆U hash and Multiplication



VIL-FOL Authentication from FIL-FOL

1 Composition Method: Let H be an n-bit (unkeyed) collision
resistant hash function then f ◦ H is Prf (also Mac).

Question. Is f (N)⊕ H(M) Nonce-based Mac? (nonce can

repeat only for forging message)

2 NO, given T = f (N)⊕ H(M)⇒ T ′ = T ⊕ H(M)⊕ H(M ′) is
also tag. So we need keyed hash Hk .

Question. Is f (N)⊕ Hk(M) Nonce-based Mac?

3 Not always, if Pr[Hk(M)⊕ Hk(M ′) = δ] is high then

T = f (N)⊕ Hk(M)⇒ Pr[f (N)⊕M ′ = T ⊕ δ] is high.

Mridul Nandi ∆U hash and Multiplication



VIL-FOL Authentication from FIL-FOL

1 Composition Method: Let H be an n-bit (unkeyed) collision
resistant hash function then f ◦ H is Prf (also Mac).

Question. Is f (N)⊕ H(M) Nonce-based Mac? (nonce can

repeat only for forging message)

2 NO, given T = f (N)⊕ H(M)⇒ T ′ = T ⊕ H(M)⊕ H(M ′) is
also tag. So we need keyed hash Hk .

Question. Is f (N)⊕ Hk(M) Nonce-based Mac?

3 Not always, if Pr[Hk(M)⊕ Hk(M ′) = δ] is high then

T = f (N)⊕ Hk(M)⇒ Pr[f (N)⊕M ′ = T ⊕ δ] is high.

Mridul Nandi ∆U hash and Multiplication



VIL-FOL Authentication from FIL-FOL

1 Composition Method: Let H be an n-bit (unkeyed) collision
resistant hash function then f ◦ H is Prf (also Mac).

Question. Is f (N)⊕ H(M) Nonce-based Mac? (nonce can

repeat only for forging message)

2 NO, given T = f (N)⊕ H(M)⇒ T ′ = T ⊕ H(M)⊕ H(M ′) is
also tag. So we need keyed hash Hk .

Question. Is f (N)⊕ Hk(M) Nonce-based Mac?

3 Not always, if Pr[Hk(M)⊕ Hk(M ′) = δ] is high then

T = f (N)⊕ Hk(M)⇒ Pr[f (N)⊕M ′ = T ⊕ δ] is high.

Mridul Nandi ∆U hash and Multiplication



Definitions of ∆U and Universal hash.

1 Differential probability: For all M 6= M ′ and for all δ, Hk is
called ε-∆U if
differential probability Pr[Hk(M)⊕ Hk(M ′) = δ] ≤ ε.

Denote the event ∆Hk(M) = δ. (∆f (x) := f (x)− f (x ′))
For “small” ε, f (N)⊕ Hk(M) is Mac (nonce-based).

2 Collision probability: When we restrict to δ = 0, i.e., collision
probability Pr[Hk(M) = Hk(M ′)] ≤ ε we say that Hk is ε-U hash.

For “small” ε, f ◦ Hk is Prf and so Mac.

3 Main object of the talk - On optimum complexity of ∆U
(or Universal) hash functions.

Mridul Nandi ∆U hash and Multiplication



Definitions of ∆U and Universal hash.

1 Differential probability: For all M 6= M ′ and for all δ, Hk is
called ε-∆U if
differential probability Pr[Hk(M)⊕ Hk(M ′) = δ] ≤ ε.

Denote the event ∆Hk(M) = δ. (∆f (x) := f (x)− f (x ′))
For “small” ε, f (N)⊕ Hk(M) is Mac (nonce-based).

2 Collision probability: When we restrict to δ = 0, i.e., collision
probability Pr[Hk(M) = Hk(M ′)] ≤ ε we say that Hk is ε-U hash.

For “small” ε, f ◦ Hk is Prf and so Mac.

3 Main object of the talk - On optimum complexity of ∆U
(or Universal) hash functions.

Mridul Nandi ∆U hash and Multiplication



Example. Multi-Linear (ML) Hash

Convention. Galois field F2n (elements are called blocks).

K1,K2, . . .
$← F2n and K to denote vector of keys.

1 ∀m1,m2 ∈ F2n , (m1,m2) 7→ m1K1 + m2K2 .

2 Differential property: For any (m1,m2) 6= (m′1,m
′
2), δ ∈ F2n ,

Pr[m1K1 + m2K2 = m′1K1 + m′2K2 + δ︸ ︷︷ ︸]= 1
2n

differential event E .

3 Proof. If m1 6= m′1 (i.e., ∆m1 6= 0) then result follows

conditioning K2.

Mridul Nandi ∆U hash and Multiplication



Example. Multi-Linear (ML) Hash

Convention. Galois field F2n (elements are called blocks).

K1,K2, . . .
$← F2n and K to denote vector of keys.

1 ∀m1,m2 ∈ F2n , (m1,m2) 7→ m1K1 + m2K2 .

2 Differential property: For any (m1,m2) 6= (m′1,m
′
2), δ ∈ F2n ,

Pr[m1K1 + m2K2 = m′1K1 + m′2K2 + δ︸ ︷︷ ︸]= 1
2n

differential event E .

3 Proof. If m1 6= m′1 (i.e., ∆m1 6= 0) then result follows

conditioning K2.

Mridul Nandi ∆U hash and Multiplication



Example. Multi-Linear (ML) Hash

Convention. Galois field F2n (elements are called blocks).

K1,K2, . . .
$← F2n and K to denote vector of keys.

1 ∀m1,m2 ∈ F2n , (m1,m2) 7→ m1K1 + m2K2 .

2 Differential property: For any (m1,m2) 6= (m′1,m
′
2), δ ∈ F2n ,

Pr[m1K1 + m2K2 = m′1K1 + m′2K2 + δ︸ ︷︷ ︸]= 1
2n

differential event E .

3 Proof. If m1 6= m′1 (i.e., ∆m1 6= 0) then result follows

conditioning K2.

Mridul Nandi ∆U hash and Multiplication



Example: Pseudo dot-product (PDP) Hash

1 ∀m1,m2 ∈ F2n , (m1,m2) 7→ (m1 + K1)(m2 + K2) .

2 Differential property: PDP = ML +K1K2 + m1m2. Function of key

gets canceled and messages goes to δ.

3 1 (or `/2) mult for 2 (or ` even) blocks (compare with ML).

(m1 + K1)(m2 + K2) + · · ·+ (m`−1 + K`−1)(m` + K`).

Question 1. Can we have ∆U hash for ` message blocks
requiring less than `/2 multiplications?

Linear function (in message and keys) has no mult and can not be

universal. Note # multiplicands is 2c for c mult and these behave

like linear, so due to entropy should not hope.

Mridul Nandi ∆U hash and Multiplication



Example: Pseudo dot-product (PDP) Hash

1 ∀m1,m2 ∈ F2n , (m1,m2) 7→ (m1 + K1)(m2 + K2) .

2 Differential property: PDP = ML +K1K2 + m1m2. Function of key

gets canceled and messages goes to δ.

3 1 (or `/2) mult for 2 (or ` even) blocks (compare with ML).

(m1 + K1)(m2 + K2) + · · ·+ (m`−1 + K`−1)(m` + K`).

Question 1. Can we have ∆U hash for ` message blocks
requiring less than `/2 multiplications?

Linear function (in message and keys) has no mult and can not be

universal. Note # multiplicands is 2c for c mult and these behave

like linear, so due to entropy should not hope.

Mridul Nandi ∆U hash and Multiplication



Multi-block Hash

1 d-block hash H = (H1, . . . ,Hd) outputs Fd
2n (nd bits) We

need it possibly for

larger hash output or

work with smaller field size might lead to better performance.
For example, 64 bit system wants to produce 128 bits.

Examples.

2 d-independent hash: H = (HK1 , . . . ,HKd
) where H is ∆U and

Ki ’s are independent.
- Larger keys,
- parallel.

3 Toeplitz hash (applied to ML and PDP): Less keys and
parallel. requires about d × ` or d × `/2 multiplications.

Mridul Nandi ∆U hash and Multiplication



Toeplitz Hash for ML


m1 m2 . . . m` 0 . . . 0 0
0 m1 . . . m`−1 m` . . . 0 0
0 0 . . . m`−2 m`−1 . . . 0 0
...

...
...

...
...

...
0 0 . . . m`−d+1 . . . m`−1 m`

·


K1

K2

K3
...
K`+d−1


- Can be computed in d × ` multiplications.
- Winograd showed that it can not be computed in “less than”
d × ` mult.

Mridul Nandi ∆U hash and Multiplication



Toeplitz Hash for PDP

 (m1,m2) (m3,m4) . . . (m`−1,m`) 0 . . . 0
0 (m1,m2) . . . (m`−3,m`−2) (m`−1,m`) . . . 0
...

...
...

...
...

 •
 (K1,K2)

(K3,K4)
...


Here, (m,m′) • (K ,K ′) = (m + K ) · (m′ + K ′).

It can be computed in d × `/2 multiplications for computing
d-block hash.

No known better algorithm.

Mridul Nandi ∆U hash and Multiplication



Multi-block Hash. Question 1-d

Question 1-d . Can we have d-block ∆U hash for ` message
blocks requiring less than d × `/2 multiplications?

1 Try-1: (m1K1 +m2K2,m1K2 +m2K1)→ 3 mult instead of 4.

However, 2−n differential probability. Expect 2−2n and about
2−nd for d-blk hash. We always have (H1, . . . ,H1).

2 Try-2: Let α be a primitive element of F2n .

(m1K1 + m2K2 + m3K3, α
2m1K1 + αm2K2 + m3K3)

where m3 = m1 + m2.

- 2−2n differential probability,
- 3 mult (mult by α is efficient) for 4 blocks with PDP.
- Our construction EHC requires less than d × `/2 mult.

Mridul Nandi ∆U hash and Multiplication



Multi-block Hash. Question 1-d

Question 1-d . Can we have d-block ∆U hash for ` message
blocks requiring less than d × `/2 multiplications?

1 Try-1: (m1K1 +m2K2,m1K2 +m2K1)→ 3 mult instead of 4.

However, 2−n differential probability. Expect 2−2n and about
2−nd for d-blk hash. We always have (H1, . . . ,H1).

2 Try-2: Let α be a primitive element of F2n .

(m1K1 + m2K2 + m3K3, α
2m1K1 + αm2K2 + m3K3)

where m3 = m1 + m2.

- 2−2n differential probability,
- 3 mult (mult by α is efficient) for 4 blocks with PDP.
- Our construction EHC requires less than d × `/2 mult.

Mridul Nandi ∆U hash and Multiplication



Multi-block Hash. Question 1-d

Question 1-d . Can we have d-block ∆U hash for ` message
blocks requiring less than d × `/2 multiplications?

1 Try-1: (m1K1 +m2K2,m1K2 +m2K1)→ 3 mult instead of 4.

However, 2−n differential probability. Expect 2−2n and about
2−nd for d-blk hash. We always have (H1, . . . ,H1).

2 Try-2: Let α be a primitive element of F2n .

(m1K1 + m2K2 + m3K3, α
2m1K1 + αm2K2 + m3K3)

where m3 = m1 + m2.

- 2−2n differential probability,
- 3 mult (mult by α is efficient) for 4 blocks with PDP.
- Our construction EHC requires less than d × `/2 mult.

Mridul Nandi ∆U hash and Multiplication



Final Question: Multiplication Complexity.

1 Minimum how much mult is necessary for d-blk hash?

2 Need to define a complexity metric for hash.

Multiplication complexity (MC) for a polynomial (or d
polynomials) - Minimum # mult to compute a polynomial (or
d polynomials).

MC for H1 := m1K1 + m2K2 and H2 := m1K2 + m2K1 are
individually 2 and for (H1,H2) is 3.

Final-Question. Minimum MC for a good ∆U hash function.

Mridul Nandi ∆U hash and Multiplication



Final Question: Multiplication Complexity.

1 Minimum how much mult is necessary for d-blk hash?

2 Need to define a complexity metric for hash.

Multiplication complexity (MC) for a polynomial (or d
polynomials) - Minimum # mult to compute a polynomial (or
d polynomials).

MC for H1 := m1K1 + m2K2 and H2 := m1K2 + m2K1 are
individually 2 and for (H1,H2) is 3.

Final-Question. Minimum MC for a good ∆U hash function.

Mridul Nandi ∆U hash and Multiplication



Results and Outline of Rest of the Talk.

1 Definition of Multiplication Complexity (MC).

2 Answer 1. The MC for any “good” ∆U hash function for `
block messages is `/2.

3 Answer 1-d . The MC for any “good” d-blk ∆U hash function
for ` block messages is (d − 1) + `/2.

4 A new construction ECH (Encode-then-Hash-then-Combine).
Requires matching (d − 1) + `/2 mult for d ≤ 4.

5 Future scope and Conclusion.

Mridul Nandi ∆U hash and Multiplication



Results and Outline of Rest of the Talk.

1 Definition of Multiplication Complexity (MC).

2 Answer 1. The MC for any “good” ∆U hash function for `
block messages is `/2.

3 Answer 1-d . The MC for any “good” d-blk ∆U hash function
for ` block messages is (d − 1) + `/2.

4 A new construction ECH (Encode-then-Hash-then-Combine).
Requires matching (d − 1) + `/2 mult for d ≤ 4.

5 Future scope and Conclusion.

Mridul Nandi ∆U hash and Multiplication



Results and Outline of Rest of the Talk.

1 Definition of Multiplication Complexity (MC).

2 Answer 1. The MC for any “good” ∆U hash function for `
block messages is `/2.

3 Answer 1-d . The MC for any “good” d-blk ∆U hash function
for ` block messages is (d − 1) + `/2.

4 A new construction ECH (Encode-then-Hash-then-Combine).
Requires matching (d − 1) + `/2 mult for d ≤ 4.

5 Future scope and Conclusion.

Mridul Nandi ∆U hash and Multiplication



Results and Outline of Rest of the Talk.

1 Definition of Multiplication Complexity (MC).

2 Answer 1. The MC for any “good” ∆U hash function for `
block messages is `/2.

3 Answer 1-d . The MC for any “good” d-blk ∆U hash function
for ` block messages is (d − 1) + `/2.

4 A new construction ECH (Encode-then-Hash-then-Combine).
Requires matching (d − 1) + `/2 mult for d ≤ 4.

5 Future scope and Conclusion.

Mridul Nandi ∆U hash and Multiplication



Results and Outline of Rest of the Talk.

1 Definition of Multiplication Complexity (MC).

2 Answer 1. The MC for any “good” ∆U hash function for `
block messages is `/2.

3 Answer 1-d . The MC for any “good” d-blk ∆U hash function
for ` block messages is (d − 1) + `/2.

4 A new construction ECH (Encode-then-Hash-then-Combine).
Requires matching (d − 1) + `/2 mult for d ≤ 4.

5 Future scope and Conclusion.

Mridul Nandi ∆U hash and Multiplication



Multiplication Complexity: Algebraic Computation

1 Algebraic computation C over variables x = (x1, . . . , xs):
sequence of addition and multiplications.

All consecutive additions → Linear function.
multiplicands are linear functions of x and vj ’s (result of
previous multiplications).

2 Want to compute PDP
(m1 + K1)(m2 + K2) + (m3 + K3)(m4 + K4).

1 L1 = (m1 + K1), L2 = (m2 + K2), v1 = L1 · L2.
2 L3 = (m3 + K3), L4 = (m4 + K4), (these do not use v1).
3 v2 = L3 · L4.
4 L5 = v1 + v2.

Mridul Nandi ∆U hash and Multiplication



Multiplication Complexity: Algebraic Computation

1 Algebraic computation C over variables x = (x1, . . . , xs):
sequence of addition and multiplications.

All consecutive additions → Linear function.
multiplicands are linear functions of x and vj ’s (result of
previous multiplications).

2 Want to compute PDP
(m1 + K1)(m2 + K2) + (m3 + K3)(m4 + K4).

1 L1 = (m1 + K1), L2 = (m2 + K2), v1 = L1 · L2.

2 L3 = (m3 + K3), L4 = (m4 + K4), (these do not use v1).
3 v2 = L3 · L4.
4 L5 = v1 + v2.

Mridul Nandi ∆U hash and Multiplication



Multiplication Complexity: Algebraic Computation

1 Algebraic computation C over variables x = (x1, . . . , xs):
sequence of addition and multiplications.

All consecutive additions → Linear function.
multiplicands are linear functions of x and vj ’s (result of
previous multiplications).

2 Want to compute PDP
(m1 + K1)(m2 + K2) + (m3 + K3)(m4 + K4).

1 L1 = (m1 + K1), L2 = (m2 + K2), v1 = L1 · L2.
2 L3 = (m3 + K3), L4 = (m4 + K4), (these do not use v1).
3 v2 = L3 · L4.

4 L5 = v1 + v2.

Mridul Nandi ∆U hash and Multiplication



Multiplication Complexity: Algebraic Computation

1 Algebraic computation C over variables x = (x1, . . . , xs):
sequence of addition and multiplications.

All consecutive additions → Linear function.
multiplicands are linear functions of x and vj ’s (result of
previous multiplications).

2 Want to compute PDP
(m1 + K1)(m2 + K2) + (m3 + K3)(m4 + K4).

1 L1 = (m1 + K1), L2 = (m2 + K2), v1 = L1 · L2.
2 L3 = (m3 + K3), L4 = (m4 + K4), (these do not use v1).
3 v2 = L3 · L4.
4 L5 = v1 + v2.

Mridul Nandi ∆U hash and Multiplication



Multiplication Complexity: Algebraic Computation

1 Want to compute Poly-hash m1K + m2K
2 + m3K

3.

L1 = m3, L2 = K , v1 = L1 · L2.

L3 = v1 + m2, (here we use v1), L4 = K .
v2 = L3 · L4.
L5 = v2 + m1, L6 = K , v3 = L5 · L6.
L7 = v3.

2 C with t mult can be described by 2t + 1 linear functions:
L1, . . . , L2t+1 mapping to F2n .

3 L2i−1 and L2i are linear in x and vj := L2j−1 · L2j , 1 ≤ j < i .

4 xi ’s will be key and message blocks.

5 Constant multiplications. Efficient and linear.

Mridul Nandi ∆U hash and Multiplication



Multiplication Complexity: Algebraic Computation

1 Want to compute Poly-hash m1K + m2K
2 + m3K

3.

L1 = m3, L2 = K , v1 = L1 · L2.
L3 = v1 + m2, (here we use v1), L4 = K .
v2 = L3 · L4.

L5 = v2 + m1, L6 = K , v3 = L5 · L6.
L7 = v3.

2 C with t mult can be described by 2t + 1 linear functions:
L1, . . . , L2t+1 mapping to F2n .

3 L2i−1 and L2i are linear in x and vj := L2j−1 · L2j , 1 ≤ j < i .

4 xi ’s will be key and message blocks.

5 Constant multiplications. Efficient and linear.

Mridul Nandi ∆U hash and Multiplication



Multiplication Complexity: Algebraic Computation

1 Want to compute Poly-hash m1K + m2K
2 + m3K

3.

L1 = m3, L2 = K , v1 = L1 · L2.
L3 = v1 + m2, (here we use v1), L4 = K .
v2 = L3 · L4.
L5 = v2 + m1, L6 = K , v3 = L5 · L6.
L7 = v3.

2 C with t mult can be described by 2t + 1 linear functions:
L1, . . . , L2t+1 mapping to F2n .

3 L2i−1 and L2i are linear in x and vj := L2j−1 · L2j , 1 ≤ j < i .

4 xi ’s will be key and message blocks.

5 Constant multiplications. Efficient and linear.

Mridul Nandi ∆U hash and Multiplication



Multiplication Complexity: Algebraic Computation

1 Want to compute Poly-hash m1K + m2K
2 + m3K

3.

L1 = m3, L2 = K , v1 = L1 · L2.
L3 = v1 + m2, (here we use v1), L4 = K .
v2 = L3 · L4.
L5 = v2 + m1, L6 = K , v3 = L5 · L6.
L7 = v3.

2 C with t mult can be described by 2t + 1 linear functions:
L1, . . . , L2t+1 mapping to F2n .

3 L2i−1 and L2i are linear in x and vj := L2j−1 · L2j , 1 ≤ j < i .

4 xi ’s will be key and message blocks.

5 Constant multiplications. Efficient and linear.

Mridul Nandi ∆U hash and Multiplication



Multiplication Complexity.

Algebraic computation: C (x1, . . . , xs).

1 For j = 1 to t

2 vj := L2j−1(x1, . . . , xs , v1, . . . , vj−1) · L2j(x1, . . . , xs , v1, . . . , vj−1);

3 Return L2t+1(x1, . . . , xs , v1, . . . , vt);

We say that C (x1, . . . , xs) computes the polynomial P(x1, . . . , xs)
if L2t+1(x1, . . . , xs , v1, . . . , vt) = P.

Definition (Multiplication complexity )

Multiplication complexity of a polynomial P is the minimum
number of mult. over all algebraic computations computing P.

Mridul Nandi ∆U hash and Multiplication



Multiplication Complexity for vector of Polynomials.

Algebraic computation: C (x1, . . . , xs) computing d polynomials.

1 For j = 1 to t

2 vj := L2j−1(x1, . . . , xs , v1, . . . , vj−1) · L2j(x1, . . . , xs , v1, . . . , vj−1);

3 Return (L2t+1(x, v), . . . , L2t+d(x, v); where v = (v1, . . . , vt)

We say that C computes the polynomial (P1, . . . ,Pd) if
L2t+i (x, v) = Pi , 1 ≤ i ≤ d .

Definition (Multiplication complexity )

Multiplication complexity of a vector of polynomial (P1, . . . ,Pd) is
the minimum number of mult. over all algebraic computations
computing (P1, . . . ,Pd).

Mridul Nandi ∆U hash and Multiplication



Some Examples of Multiplication Complexity.

1 Upper bound of MC: Construct an algebraic computation.

2 Lower bound of MC: requires some tricks, not obvious.

Examples.

1 MC for xn is log2 n. Note that by multiplying c times we can
get degree at most 2c .

2 Winograd had shown that MC for m1K1 + . . .+ m`K` is `.

3 MC for Topelitz construction based on ML is `d .

Mridul Nandi ∆U hash and Multiplication



Some Examples of Multiplication Complexity.

1 Upper bound of MC: Construct an algebraic computation.

2 Lower bound of MC: requires some tricks, not obvious.

Examples.

1 MC for xn is log2 n. Note that by multiplying c times we can
get degree at most 2c .

2 Winograd had shown that MC for m1K1 + . . .+ m`K` is `.

3 MC for Topelitz construction based on ML is `d .

Mridul Nandi ∆U hash and Multiplication



Lower Bound of MC.

1 Lower bound of MC (p) for any fixed polynomial p is not
obvious.

2 Here we target apparently more harder questions.

What is min{MC (p) : p ∈ H} where H is a family of
polynomials having ∆U property?

Mridul Nandi ∆U hash and Multiplication



Lower Bound of MC.

1 Lower bound of MC (p) for any fixed polynomial p is not
obvious.

2 Here we target apparently more harder questions.

What is min{MC (p) : p ∈ H} where H is a family of
polynomials having ∆U property?

Mridul Nandi ∆U hash and Multiplication



Answer to Question-1.

Theorem

Let t < `/2. Let C compute H(K1, . . . ,Kr ,m1, . . . ,m`) with t
multiplications (i.e., MC (H) ≤ t) then ∃m 6= m′ ∈ F`

2n , δ ∈ F2n ,

Pr[HK(m)⊕ HK(m′) = δ] = 1.

Corollary

MC (PDP) = `/2, and it is optimum.

BRW (Bernstein-Rabin-Winograd) is also optimum (single
key, but about `2−n-∆U.

Mridul Nandi ∆U hash and Multiplication



Answer to Question-1.

Theorem

Let t < `/2. Let C compute H(K1, . . . ,Kr ,m1, . . . ,m`) with t
multiplications (i.e., MC (H) ≤ t) then ∃m 6= m′ ∈ F`

2n , δ ∈ F2n ,

Pr[HK(m)⊕ HK(m′) = δ] = 1.

Proof Sketch.

1 We define a function V maps m,K to (v1, . . . , v2t).

2 Using linearity and m has more than 2t choices we find a
differential pair of V with probability 1.

3 The same pair leads differential pair for H (possibly with
different difference).

Mridul Nandi ∆U hash and Multiplication



Answer to Question 1-d .

Theorem

Let t < `/2 + r , r ≤ d. Let C compute a vector of d polynomials
H = (H1, . . . ,Hd) with t multiplications then

∃m 6= m′ ∈ F`
2n , δ ∈ F2n ,Pr[HK(m)⊕ HK(m′) = δ] ≥ 2−nr .

1 If r = d − 1 (or t = `/2 + d − 2), we say that we only get
differential probability about 2−n(d−1) instead of 2−nd .

2 r = d ⇒ t ≥ d − 1 + `/2 is the minimum number of mult (in
F2n) to get about 2−nd -∆U hash which outputs Fd

2n .

Mridul Nandi ∆U hash and Multiplication



Proof of Theorem 1-d .

1 Can apply previous idea to find a differential pair for the first
v1, . . . , vt−r (as 2(t − r) < `).

2 For remaining vi ’s (r such, i.e., vt−r+1, . . . , vt) we claim that
there must exist a difference with probability at least 2−nr

(the best difference, existential).

3 This will eventually leads to differential pair for H with same
probability.

Mridul Nandi ∆U hash and Multiplication



Answer to the Final Question.

Encode-then-Hash-then-Combine:

1 error correcting code: e : D → A` with the minimum
distance d .

MDS with systematic form such as [I : V ] where V is a
Vandermonde Matrix.

2 ∆U hash: hK : A→ F2n be an ε-∆U.

A = F2
2n and (m1,m2) 7→ (m1 + K1)(m2 + K2).

3 Combiner: Let V be a matrix of dimension d × ` whose
entries are from F2n such that any d columns are linearly
independent.

Vandermonde Matrix, again.

Mridul Nandi ∆U hash and Multiplication



Encode-then-Hash-then-Combine or EHC.

Input: M ∈ D.
Output: (H1, . . . ,Hd) ∈ Fd

2n .

1 e(M) = (m1, . . . ,m`) ∈ A`.

2 hi = hKi
(mi ) for ` independent keys Ki ’s, 1 ≤ i ≤ `.

3 (H1, . . . ,Hd) = (h1, . . . , h`) · V , i.e.
1 1 · · · 1 1

α`−1 α`−2 · · · α 1
...

...
...

...

α(`−1)(d−1) α(`−2)(d−1) · · · αd−1 1




h1

h2
...
h`

 =


H1

H2
...
Hd



Mridul Nandi ∆U hash and Multiplication



Differential property of EHC.

If M 6= M ′, then (m1, . . . ,m`) and (m1, . . . ,m`) differ at least
in d positions (for simplicity assume the first d positions).

Conditions all keys Kd+1, . . . ,K`.

The differential event implies that
(∆hK1(m1), . . . ,∆hKd

(md)) · V ′ = δ′ where V ′ is the first d
columns of V and non-singular.

Thus differential probability is at most εd .

Mridul Nandi ∆U hash and Multiplication



Specific Choices of EHC for d = 2, ` + 2 = 2`′.

1 M = (x1, . . . , x`′) ∈ F`′

22n . We write xi = (m2i−1,m2i ) ∈ F2
2n .

2 x`′ = ⊕ixi = (m`′−1,m`′).

3 hK ,K ′(m,m′) = (m ⊕ K ) · (m′ ⊕ K ′) ∈ F2n (PDP).

4 V is Vandermonde matrix with entries from F2n .(
1 1 · · · 1 1

α`−1 α`−2 · · · α 1

)
5 H1 = (m1 ⊕ K1)(m2 ⊕ K2)⊕ · · · ⊕ (m`−1 ⊕ K`−1)(m` ⊕ K`)

6 H2 = α`′−1(m1⊕K1)(m2⊕K2)⊕· · ·⊕(m`−1⊕K`−1)(m`⊕K`)

Variable Length. Can be taken care by hashing length.

Mridul Nandi ∆U hash and Multiplication



Specific Choices of EHC for d = 4.

Lin

Lin

16
16

16

32

96
96

16

16

16

64

32

16 Bit
Multiplier

16

16

K

K
′

1616

M M
′

32

MUX

32

Mridul Nandi ∆U hash and Multiplication



Comparison with Toeplitz, d = 4 for PDP

K1

K2

K3

K4

K
′
1

K
′
2

K
′
3

K
′
4

H1

H2

H3

H4

Mi M
′
i

16

16

16 16

16

16

16

16
16 bit

multiplier

16 bit
multiplier

multiplier

multiplier

16 bit

16 bit

Mridul Nandi ∆U hash and Multiplication



Future Work and Conclusion.

1 Provide tight matching bounds on multiplications for ∆U
hash functions, even for multi-block hash.

2 A practical construction (hardware friendly, less area). Actual
hardware performace yet to observe.

3 Here we consider multiplication vs. message blocks. One can
include error probability and study the relationship among
these.

Mridul Nandi ∆U hash and Multiplication



Thank You

Mridul Nandi ∆U hash and Multiplication


