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Context

Diffusion layers in a block cipher/SPN should:

obviously, offer good diffusion,

_ have a large branch number,

be efficient to evaluate,

_ both in software and hardware implementations.

usually, be linear,

_ simplifies analysis/security proofs.

MDS matrices offer optimal diffusion:

they have the highest possible branch number,

but large MDS matrices are slow to evaluate

_ cannot be sparse, no symmetries...
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Context
Recursive MDS Matrices

Recursive MDS matrices come from companion matrices,

such that their k-th power is MDS.

C =

 0 1 0
0

. . .
0 0 1

c0 c1 ... ck−1

 and C k is MDS.

Introduced in LED and Photon: [Guo et al. - Crypto 2011]

compact description, [Guo et al. - CHES 2011]

compact hardware implementation,

_ can be seen as an LFSR, or a generalized Feistel,

efficient for well chosen ci .
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Context
Finding Recursive MDS Matrices

Such matrices can be found through exhaustive search:

pick good/efficient values ci ,

check if C k is MDS

_ all minors (of any size) of C k should be non-zero.

[Sajadieh et al. - FSE 2012]

_ exhibit intersting 4× 4 matrices.

[Wu et al. - SAC 2013]

_ focus on the number of binary XORs.

[Augot, Finiasz - ISIT 2013]

_ replace symbolic computations with GF operations.
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Context
Finding Recursive MDS Matrices

Such matrices can be found through exhaustive search:

pick good/efficient values ci ,

check if C k is MDS

_ all minors (of any size) of C k should be non-zero.

Pros: possible to target specific companion matrices.

focus more on software or hardware.

Cons: too expensive for large matrices.

for a full layer diffusion in the AES, 2128 possiblities.

_ It would be nice to have direct constructions.
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Recursive MDS
Matrices as

Cyclic Codes



Understanding the Matrix Structure

A companion matrix can be associated to a polynomial:

g(X ) = X k + ck−1X k−1 + · · ·+ c1X + c0

For k = 3, for example:

C =

 0 1 0

0 0 1

c0 c1 c2

 =

 0 1 0

0 0 1

X 3 mod g(X )


Then:

C 2 =

 0 0 1

X 3 mod g(X )

X 4 mod g(X )

 , C 3 =

X 3 mod g(X )

X 4 mod g(X )

X 5 mod g(X )

 .
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Understanding the Matrix Structure

C k is MDS iff G =
(

C k | Idk

)
generates an MDS code,

_ we are looking for MDS codes generated by:

G =

X 3 mod g(X ) 1 0 0

X 4 mod g(X ) 0 1 0

X 5 mod g(X ) 0 0 1


Each line of the matrix/codeword is a multiple of g(X )

_ for some g(X ), this defines a cyclic code!
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Understanding the Matrix Structure

C k is MDS iff G =
(

C k | Idk

)
generates an MDS code,

_ we are looking for MDS codes generated by:

G =

X 3 mod g(X ) 1 0 0

X 4 mod g(X ) 0 1 0

X 5 mod g(X ) 0 0 1


Each line of the matrix/codeword is a multiple of g(X )

_ for some g(X ), this defines a cyclic code!

A cyclic code is an ideal of Fq[X ]/(X n + 1):

defined by a generator g(X ) which divides X n + 1,

with dimension k = n − deg(g),

_ we need polynomials g(X ) defining MDS cyclic codes
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BCH Codes

Computing the minimal distance of a cyclic code is hard

for some constructions, lower bounds exist.

To define a BCH code over Fq:

pick β in some extension Fqm of Fq, and integers d , `

compute g(X ) = lcm(MinFq(β`), ..., MinFq(β`+d−2))

g(X ) defines a cyclic code of length n = ord(β)

_ its minimal distance is ≥ d
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BCH Codes

Computing the minimal distance of a cyclic code is hard

for some constructions, lower bounds exist.

To define a BCH code over Fq:

pick β in some extension Fqm of Fq, and integers d , `

compute g(X ) = lcm(MinFq(β`), ..., MinFq(β`+d−2))

g(X ) defines a cyclic code of length n = ord(β)

_ its minimal distance is ≥ d

The dimension of the code is n − deg(g):

so, the code is MDS if deg(g) = d − 1

_ the β`+i need to be “mutual conjugates”.
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Shortened BCH Codes
Why do we need shortening?

The input and output size of a diffusion layer are equal

we need a code of dimension k and length 2k.

G =

 C k Idk

 k

︸ ︷︷ ︸
k

︸ ︷︷ ︸
k

For a BCH, we need β of order 2k

impossible in a field of characteristic 2,

_ build a longer BCH code, and shorten it.
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Shortened BCH Codes
Why do we need shortening?

The input and output size of a diffusion layer are equal

we need a code of dimension k and length 2k.

Pick a element β of order 2k + z

use k consecutive powers of β for a g(X ) of degree k,

shorten the code on its z last positions.

G ′ =


X 3 mod g(X ) 1 0 0 0

X 4 mod g(X ) 0 1 0 0

X 5 mod g(X ) 0 0 1 0

X 6 mod g(X ) 0 0 0 1


 k+z

︸ ︷︷ ︸
k

︸ ︷︷ ︸
k+z
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Shortened BCH Codes
Why do we need shortening?

The input and output size of a diffusion layer are equal

we need a code of dimension k and length 2k.

Pick a element β of order 2k + z

use k consecutive powers of β for a g(X ) of degree k,

shorten the code on its z last positions.

G ′ =


X 3 mod g(X ) 1 0 0

X 4 mod g(X ) 0 1 0

X 5 mod g(X ) 0 0 1


 k

︸ ︷︷ ︸
k

︸ ︷︷ ︸
k
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Shortened BCH Codes
Why do we need shortening?

The input and output size of a diffusion layer are equal

we need a code of dimension k and length 2k.

Pick a element β of order 2k + z

use k consecutive powers of β for a g(X ) of degree k,

shorten the code on its z last positions.

Shortening removes some words from the code:

it can only increase its minimal distance,

if a code is MDS, shortening it preserves the MDS

property.
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Direct Constructions



A First Direct Construction

For a base field of size q = 2s:

pick β of order q + 1

_ q + 1 divides q2 − 1 so β is always in Fq2,

appart for β0 = 1, MinFq(β i) is always of degree 2

_ each β i has a single conjugate βqi = β−i

For a diffusion layer of k elements of Fq:

if k is even, use all the β i with i ∈
[

q−k
2 + 1, q+k

2

]
,

if k is odd, use all the β i with i ∈
[
−k−1

2 , k−1
2

]
.
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A First Direct Construction

For a base field of size q = 2s:

pick β of order q + 1

_ q + 1 divides q2 − 1 so β is always in Fq2,

appart for β0 = 1, MinFq(β i) is always of degree 2

_ each β i has a single conjugate βqi = β−i

We get a [q + 1, q + 1− k , k + 1]q MDS BCH code

we shorten it on (q + 1− 2k) positions,

we get a [2k, k, k + 1]q MDS code,

_ gives a k × k recursive MDS matrix.
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Exhaustive Search on BCH Codes

For a diffusion of k elements of Fq we can search all

possible BCH codes in a time polynomial in q and k.

for z ← 1 to (q + 1− 2k), with z odd do
α← primitive (2k + z)-th root of unity of Fq

forall the β = αi such that ord(β) = 2k + z do
for `← 0 to (2k + z − 2) do

g(X )←
∏k−1

j=0 (X − β`+j)

if g(X ) ∈ Fq[X ] then (test if g has its coefficients in Fq)

S ← S ∪ {g(X )}
end

end
end

end
return S
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What Was Found

The direct construction gives symmetric solutions:

only k
2 different coefficients,

the inverse diffusion is “the same” as the diffusion,

No limit to the diffusion size:

_ 1024 bits using 128 elements of F256,

_ 2304 bits using 256 elements of F512.

The exhaustive search gives many solutions:

we rediscover many previously found matrices,

some are of little interest (complicated coefficients),

some are very nice:

_ Comp(1,α3,α,α3)4 is MDS (for α4 + α + 1 = 0).
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What Was Not Found

All recursive matrices come from shortened cyclic codes:

but not all MDS cyclic codes are BCH codes,

_ we could try to explore other families,

most cyclic codes have unknown minimal distance.

Shortening a code can increase its minimal distance:

this is what happens with the Photon matrix,

the 4× 4 matrix comes from a code of length 224− 1:

_ it has minimal distance 3,

_ once shortened to a length 8, it grows to 5 (MDS).

We need to find an explicit construction of such short

matrices!

15


